Зарегистрироваться
Восстановить пароль
FAQ по входу

Факур Матеуш. Causal Inference на Python. Причинно-следственные связи в IT-разработке

  • Файл формата pdf
  • размером 37,71 МБ
Факур Матеуш. Causal Inference на Python. Причинно-следственные связи в IT-разработке
Пер. с англ. Е. Матвеев; Научный редактор Д. Лысенко. — Астана: Спринт Бук, 2025. — 400 с.: ил. — ISBN 978-601-08-4354-7.
Сколько покупателей привлечет дополнительный доллар, вложенный в онлайн-рекламу? Какие клиенты будут покупать только по скидочному купону? Как разработать оптимальную стратегию ценообразования? Причинно-следственный анализ (casual inference) — лучший способ разобраться, как влиять на бизнес-метрики, которыми вы хотите управлять. И для этого понадобится всего пара строк кода на Python.
Матеуш Факур рассказывает про малоизвестные применения причинно-следственного анализа, с помощью которых можно оценить влияние воздействия на результат. Менеджеры, специалисты по работе с данными и бизнес-аналитики познакомятся как с классическими методами причинно-следственного анализа (A/B тестами, линейной регрессией, мерой склонности, синтетическим контролем, разностью разностей), так и с современными подходами (применением машинного обучения для оценки гетерогенных эффектов). Каждый метод проиллюстрирован практическим примером.
С помощью этой книги вы:
Узнаете, как использовать основные концепции causal inference;
Сможете сформулировать прикладную задачу в терминах/категориях causal inference;
Поймете, как смещение мешает делать выводы о causal inference;
Узнаете, как результаты causal inference могут различаться;
Сможете использовать повторные наблюдения за одними и теми же клиентами во времени для корректировки смещений;
Узнаете, как различаются причинные эффекты в разных географических регионах
Изучите смещение при несоответствии и размывание эффекта.
Для кого эта книга
Разработчики, архитекторы, отраслевые специалисты по работе с данными.
Книга лучше понимается, когда читатель уже владеет основами знаний по машинному обучению, статистике и программированию на Python.
В связи с выходом «Causal Inference на Python», мы бы хотели показать статью, написанную на основе предыдущей книги Матеуша Факура – «Causal Inference for the Brave and True».
Разбираемся с причинно-следственным анализом: метод синтетического контроля и реализация на Python
Что такое синтетический контроль?
Метод синтетического контроля характеризовали как «важнейшую разработку при оценке программ, изобретённую за последнее десятилетие» (Atheyand Imbens 2016). Синтетический контроль — это метод, применяемый в статистике для оценки эффективности вмешательства в сравнительных кейс-исследованиях. В рамках этого метода требуется выстроить взвешенную комбинацию групп, используемых в качестве контрольных, с которыми затем сравнивается исследуемая группа. Такое сравнение позволяет оценить, что произошло бы с исследуемой группой, если бы к ней не применялись меры, применяемые сейчас. В основе метода лежит простая, но мощная идея, не требуется искать в незатронутой группе ни одного экземпляра, который был бы похож на тех, кто входит в исследуемую группу. Вместо этого можно самостоятельно собрать нужную группу, скомбинировав в ней множество «нетронутых» экземпляров, получив таким образом материал для синтетического контроля.
В отличие от подходов, учитывающих разность разностей, описываемый метод позволяет учесть и такой фактор, как постепенное изменение состава спутывающих факторов, — это делается путём взвешивания контрольной группы, чтобы она ещё до вмешательства точнее соответствовала исследуемой группе. Ещё одно достоинство синтетического контроля заключается в том, что исследователи могут систематически выбирать группы сравнения. Метод применим в политологии, здравоохранении, криминалистике и экономике.
В этой статье мы постараемся объяснить специфику метода синтетического контроля и в качестве примера покажем, как он реализуется на Python. Прежде всего хочу отметить, что статья написана на материале из книги Causal Inference for The Brave and True. Эта книга, выложенная для всеобщего использования в Интернете, невероятно помогла мне глубже разобраться в различных методах из области причинно-следственного анализа.
В нашем примере исследуем такую проблему: как обложение табачной продукции налогами влияет на курение. Чтобы дать немного более широкий контекст, отмечу, что этот вопрос давно обсуждается в экономических кругах. Одна из партий утверждает, что под влиянием налогов стоимость сигарет вырастет, из-за этого спрос на сигареты снизится. По мнению другой партии, поскольку у курящих развивается никотиновая зависимость, изменение цены особенно не отразится на спросе. В экономических терминах можно было бы сказать, что спрос на сигареты неэластичен относительно цены, поэтому, повышая налоги на табак, государство просто пополняет бюджет за счёт курильщиков. Чтобы определить, кто прав, обратимся к некоторым данным, характеризующим эту проблему в США.
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация