Зарегистрироваться
Восстановить пароль
FAQ по входу

Sekine Satoshi, Ranchhod Elisabete (eds.). Named Entities: Recognition, Classification and Use

  • Файл формата pdf
  • размером 2,08 МБ
  • Добавлен пользователем
  • Описание отредактировано
Sekine Satoshi, Ranchhod Elisabete (eds.). Named Entities: Recognition, Classification and Use
John Benjamins Publishing Company, 2009. — 177 p. — (Benjamins Current Topics 19).
Named Entities provides critical information for many NLP applications. Named Entity recognition and classification (NERC) in text is recognized as one of the important sub-tasks of Information Extraction (IE). The seven papers in this volume cover various interesting and informative aspects of NERC research. Nadeau & Sekine provide an extensive survey of past NERC technologies, which should be a very useful resource for new researchers in this field. Smith & Osborne describe a machine learning model which tries to solve the over-fitting problem. Mazur & Dale tackle a common problem of NE and conjunction; as conjunctions are often a part of NEs or appear close to NEs, this is an important practical problem. A further three papers describe analyses and implementations of NERC for different languages: Spanish (Galicia-Haro & Gelbukh), Bengali (Ekbal, Naskar & Bandyopadhyay), and Serbian (Vitas, Krstev & Maurel). Finally, Steinberger & Pouliquen report on a real WEB application where multilingual NERC technology is used to identify occurrences of people, locations and organizations in newspapers in different languages.
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация