Зарегистрироваться
Восстановить пароль
FAQ по входу

Eftimov T., Korošec P. Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms

  • Файл формата djvu
  • размером 1,22 МБ
  • Добавлен пользователем
  • Описание отредактировано
Eftimov T., Korošec P. Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms
New York: Springer, 2022. — 141 p.
This book explains what is required to make a more robust statistical comparison of the performance achieved by meta-heuristics. It does not explain how to develop a new single- or multi-objective meta-heuristic, or how to run it on a specific or a set of problem instances and collect the experimental data. It deals in which statistical analysis should be made once the experimental data is collected to obtain robust statistical outcomes.
Meta-heuristic Stochastic Optimization
Benchmarking Theory
Introduction to Statistical Analysis
Approaches to Statistical Comparisons Used for Stochastic Optimization Algorithms
Deep Statistical Comparison in Multi-Objective Optimization
Deep Statistical Comparison in Single-Objective Optimization
DSCTool—A Web-Service-Based e-Learning Tool
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация