Hafner Publisning Company, 1937. — 367 p.
An excellent introduction to modern real variable theorem, this volume covers all the standard topics: theory, theory of measure, functions with general properties, and theory of integration, with emphasis on the Lebesgue integral and its related theory of derivation.
The author begins with a discussion of the integral in an abstract space, covering additive classes of sets, measurable functions, integration of sequences of functions, and the Lebesgue decomposition of an additive function. Succeeding chapters cover Carathéodory measure; functions of bounded variation and the Lebesgue-Stieltjes integral; the derivation of additive functions of a set and of an interval; and major and minor functions and the Perron integral. Additional topics include functions of generalized bounded variation; Denjoy integrals; and derivates of functions of one or two real variables.