Зарегистрироваться
Восстановить пароль
FAQ по входу

Duistermaat J.J., Kolk J.A.C. Multidimensional Real Analysis I: Differentiation

  • Файл формата pdf
  • размером 5,50 МБ
  • Добавлен пользователем
  • Описание отредактировано
Duistermaat J.J., Kolk J.A.C. Multidimensional Real Analysis I: Differentiation
Cambridge: Cambridge University Press, 2004. — 440 p. — (Cambridge Studies in Advanced Mathematics 86). — ISBN: 9780521551144.
This book, which is in two parts, provides an introduction to the theory of vector-valued functions on Euclidean space. We focus on four main objects of study and in addition consider the interactions between these. Volume I is devoted to differentiation. Differentiable functions on Rn come first, in Chapters 1 through 3. Next, differentiable manifolds embedded in Rn are discussed, in Chapters 4 and 5. In Volume II we take up integration. Chapter 6 deals with the theory of n-dimensional integration over Rn . Finally, in Chapters 7 and 8 lower-dimensional integration over submanifolds of Rn is developed; particular attention is paid to vector analysis and the theory of differential forms, which are treated independently from each other. Generally speaking, the emphasis is on geometric aspects of analysis rather than on matters belonging to functional analysis. In presenting the material we have been intentionally concrete, aiming at a thorough understanding of Euclidean space. Once this case is properly understood, it becomes easier to move on to abstract metric spaces or manifolds and to infinite-dimensional function spaces. If the general theory is introduced too soon, the reader might get confused about its relevance and lose motivation. Yet we have tried to organize the book as economically as we could, for instance by making use of linear algebra whenever possible and minimizing the number of э – δ arguments, always without sacrificing rigor. In many cases, a fresh look at old problems, by ourselves and others, led to results or proofs in a form not found in current analysis textbooks. Quite often, similar techniques apply in different parts of mathematics; on the other hand, different techniques may be used to prove the same result. We offer ample illustration of these two principles, in the theory as well as the exercises. A working knowledge of analysis in one real variable and linear algebra is a prerequisite. The main parts of the theory can be used as a text for an introductory course of one semester, as we have been doing for second-year students in Utrecht during the last decade. Sections at the end of many chapters usually contain applications that can be omitted in case of time constraints. This volume contains 334 exercises, out of a total of 568, offering variations and applications of the main theory, as well as special cases and openings toward applications beyond the scope of this book. Next to routine exercises we tried also to include exercises that represent some mathematical idea. The exercises are independent from each other unless indicated otherwise, and therefore results are sometimes repeated. We have run student seminars based on a selection of the more challenging exercises.
Continuity.
Differentiation.
Inverse Function and Implicit Function Theorems.
Manifolds.
Tangent Spaces.
Exercises.
Notation.
См.: /file/1623892/
True PDF
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация