Зарегистрироваться
Восстановить пароль
FAQ по входу

Cambria Erik, Hussain Amir. Sentic Computing: A Common-Sense-Based Framework for Concept-Level Sentiment Analysis

  • Файл формата pdf
  • размером 4,16 МБ
  • Добавлен пользователем
  • Описание отредактировано
Cambria Erik, Hussain Amir. Sentic Computing: A Common-Sense-Based Framework for Concept-Level Sentiment Analysis
Springer, 2016. — 196 p. — (Socio-Affective Computing). — ISBN10: 3319236539, ISBN13: 978-3319236537.
This volume is a knowledge-based approach to concept-level sentiment analysis at the crossroads between affective computing, information extraction, and common-sense computing, which exploits both computer and social sciences to better interpret and process information on the Web.
Concept-level sentiment analysis goes beyond a mere word-level analysis of text in order to enable a more efficient passage from (unstructured) textual information to (structured) machine-processable data, in potentially any domain.
Readers will discover the following key novelties, that make this approach so unique and avant-garde, being reviewed and discussed:
Sentic Computing's multi-disciplinary approach to sentiment analysis-evidenced by the concomitant use of AI and Semantic Web techniques, for knowledge representation and inference
Sentic Computing's shift from syntax to semantics-enabled by the adoption of the bag-of-concepts model instead of simply counting word co-occurrence frequencies in text
Sentic Computing's shift from statistics to linguistics-implemented by allowing sentiments to flow from concept to concept based on the dependency relation between clauses
This volume is the first in the Series Socio-Affective Computing edited by Dr Amir Hussain and Dr Erik Cambria and will be of interest to researchers in the fields of socially intelligent, affective and multimodal human-machine interaction and systems.
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация