6th edition. — Wiley, 2003. — 659 p. — ISBN: 978-0-471-43881-6
This book is written as a text for advanced undergraduate and graduate students in aerospace, civil, and mechanical engineering and applied mechanics. It is also intended as a reference for practitioners. The book contains topics sufficient for two academic semesters or three quarters. Thus, there is enough variety that instructors of a one-semester course or one- or two-quarter courses can choose topics of interest to students.
In this sixth edition, we have attempted to thoroughly review the fifth edition with the intention of clarifying and condensing the presentation, updating many of the examples and homework problems, and adding selected new topics.
In Chapter 1 basic concepts of one-dimensional load-stress, load-deflection, and stress-strain diagrams are introduced. A discussion of the tension test and associated material properties is presented, followed by a brief introduction to failure theories. Theories of stress and strain follow in Chapter 2. Definitions of the stress tensor and various stress quantities are developed from detailed examination of equilibrium conditions for a body. Here, the independence and similarity of the theories of stress and strain become evident. Chapter 3 joins the theories of stress and strain by the theory of linear stress-strain-temperature relations, based upon the requirements of the first law of thermodynamics. Stress-strain relations and material constants for anisotropic, orthotropic, and isotropic materials are discussed. Yield theory is developed in Chapter 4. Starting with one-dimensional stress-strain behavior, the concept of yield criteria, yield functions, and yield surfaces are developed to describe nonlinear material response for multiaxial stress states. The von Mises and Tresca criteria are discussed and compared in detail. The application of energy methods, Chapter 5, includes a discussion of the dummy load method and its relation to the Castigliano method.
Chapters 6-12 treat classical topics in mechanics of materials. That is, these chapters use fundamental concepts of equilibrium, compatibility conditions, constitutive relations, and material response to study the behavior of selected mechanical and structural members. Specifically, the following topics are considered: torsion, nonsymmetrical bending, shear center, curved beams, beams on elastic foundations, thick-wall cylinders, and column stability. Key kinematic and material response assumptions are emphasized in order to highlight the applicability and limitations of the analysis methods.
Chapters 13-18 contain selected topics that are not generally treaded by the mechanics of material method, but are nevertheless areas of interest and advanced study for practicing engineers. This part of the book contains a mix of topics involving both behavior of structural and mechanical systems (flat plates, stress concentrations, and contact stresses) as well as detailed study of material behaviour (fracture mechanics and fatigue).